2,138 research outputs found

    Ensemble estimation of multivariate f-divergence

    Full text link
    f-divergence estimation is an important problem in the fields of information theory, machine learning, and statistics. While several divergence estimators exist, relatively few of their convergence rates are known. We derive the MSE convergence rate for a density plug-in estimator of f-divergence. Then by applying the theory of optimally weighted ensemble estimation, we derive a divergence estimator with a convergence rate of O(1/T) that is simple to implement and performs well in high dimensions. We validate our theoretical results with experiments.Comment: 14 pages, 6 figures, a condensed version of this paper was accepted to ISIT 2014, Version 2: Moved the proofs of the theorems from the main body to appendices at the en

    Nonparametric Estimation of Distributional Functionals and Applications.

    Full text link
    Distributional functionals are integrals of functionals of probability densities and include functionals such as information divergence, mutual information, and entropy. Distributional functionals have many applications in the fields of information theory, statistics, signal processing, and machine learning. Many existing nonparametric distributional functional estimators have either unknown convergence rates or are difficult to implement. In this thesis, we consider the problem of nonparametrically estimating functionals of distributions when only a finite population of independent and identically distributed samples are available from each of the unknown, smooth, d-dimensional distributions. We derive mean squared error (MSE) convergence rates for leave-one-out kernel density plug-in estimators and k-nearest neighbor estimators of these functionals. We then extend the theory of optimally weighted ensemble estimation to obtain estimators that achieve the parametric MSE convergence rate when the densities are sufficiently smooth. These estimators are simple to implement and do not require knowledge of the densities’ support set, in contrast with many competing estimators. The asymptotic distribution of these estimators is also derived. The utility of these estimators is demonstrated through their application to sunspot image data and neural data measured from epilepsy patients. Sunspot images are clustered by estimating the divergence between the underlying probability distributions of image pixel patches. The problem of overfitting is also addressed in both applications by performing dimensionality reduction via intrinsic dimension estimation and by benchmarking classification via Bayes error estimationPhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133394/1/krmoon_1.pd

    Meta learning of bounds on the Bayes classifier error

    Full text link
    Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.Comment: 6 pages, 3 figures, to appear in proceedings of 2015 IEEE Signal Processing and SP Education Worksho

    Direct Estimation of Information Divergence Using Nearest Neighbor Ratios

    Full text link
    We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets XX and YY, respectively with NN and MM samples, where η:=M/N\eta:=M/N is a constant value. Considering the kk-nearest neighbor (kk-NN) graph of YY in the joint data set (X,Y)(X,Y), we show that the average powered ratio of the number of XX points to the number of YY points among all kk-NN points is proportional to R\'{e}nyi divergence of XX and YY densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of γ\gamma-H\"{o}lder smooth functions, the estimator achieves the MSE rate of O(N−2γ/(γ+d))O(N^{-2\gamma/(\gamma+d)}). Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order dd, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of O(1/N)O(1/N). Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.Comment: 2017 IEEE International Symposium on Information Theory (ISIT

    Information Theoretic Structure Learning with Confidence

    Full text link
    Information theoretic measures (e.g. the Kullback Liebler divergence and Shannon mutual information) have been used for exploring possibly nonlinear multivariate dependencies in high dimension. If these dependencies are assumed to follow a Markov factor graph model, this exploration process is called structure discovery. For discrete-valued samples, estimates of the information divergence over the parametric class of multinomial models lead to structure discovery methods whose mean squared error achieves parametric convergence rates as the sample size grows. However, a naive application of this method to continuous nonparametric multivariate models converges much more slowly. In this paper we introduce a new method for nonparametric structure discovery that uses weighted ensemble divergence estimators that achieve parametric convergence rates and obey an asymptotic central limit theorem that facilitates hypothesis testing and other types of statistical validation.Comment: 10 pages, 3 figure

    The intrinsic value of HFO features as a biomarker of epileptic activity

    Full text link
    High frequency oscillations (HFOs) are a promising biomarker of epileptic brain tissue and activity. HFOs additionally serve as a prototypical example of challenges in the analysis of discrete events in high-temporal resolution, intracranial EEG data. Two primary challenges are 1) dimensionality reduction, and 2) assessing feasibility of classification. Dimensionality reduction assumes that the data lie on a manifold with dimension less than that of the feature space. However, previous HFO analyses have assumed a linear manifold, global across time, space (i.e. recording electrode/channel), and individual patients. Instead, we assess both a) whether linear methods are appropriate and b) the consistency of the manifold across time, space, and patients. We also estimate bounds on the Bayes classification error to quantify the distinction between two classes of HFOs (those occurring during seizures and those occurring due to other processes). This analysis provides the foundation for future clinical use of HFO features and buides the analysis for other discrete events, such as individual action potentials or multi-unit activity.Comment: 5 pages, 5 figure

    Investigations of Temperature and Backscatter Correlation in the Dry Snow Zone of the Greenland Ice Sheet

    Get PDF
    Due to system degradation, satellite-borne scatterometers require post-launch calibrations to maintain accuracy. The dry snow zone of the Greenland ice sheet has been used for calibration due to its relatively constant backscatter properties. However, we recently discovered that some of the variation in the dry snow zone backscatter is seasonal. This paper uses correlation analysis to investigate the relationship between temperature and backscatter in the dry snow zone. The correlation coefficient is found to be significant, especially after spatially averaging the backscatter. However, an analysis and simulation demonstrate that spatial averaging can artificially increase the correlation coefficient

    Image patch analysis and clustering of sunspots: a dimensionality reduction approach

    Full text link
    Sunspots, as seen in white light or continuum images, are associated with regions of high magnetic activity on the Sun, visible on magnetogram images. Their complexity is correlated with explosive solar activity and so classifying these active regions is useful for predicting future solar activity. Current classification of sunspot groups is visually based and suffers from bias. Supervised learning methods can reduce human bias but fail to optimally capitalize on the information present in sunspot images. This paper uses two image modalities (continuum and magnetogram) to characterize the spatial and modal interactions of sunspot and magnetic active region images and presents a new approach to cluster the images. Specifically, in the framework of image patch analysis, we estimate the number of intrinsic parameters required to describe the spatial and modal dependencies, the correlation between the two modalities and the corresponding spatial patterns, and examine the phenomena at different scales within the images. To do this, we use linear and nonlinear intrinsic dimension estimators, canonical correlation analysis, and multiresolution analysis of intrinsic dimension.Comment: 5 pages, 7 figures, accepted to ICIP 201
    • …
    corecore